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Abstract
The paper first offers a parallel between two approaches to conceptual clustering, namely formal concept

analysis (augmented with the introduction of new operators) and bipartite graph analysis. It is shown that a
formal concept (as defined in formal concept analysis) corresponds to the idea of a maximal bi-clique, while
sub-contexts, which correspond to independent “conceptual worlds” that can be characterized by means of
the new operators introduced, are disconnected sub-graphs in a bipartite graph. The parallel between formal
concept analysis and bipartite graph analysis is further exploited by considering “approximation” methods
on both sides. It leads to suggest new ideas for providing simplified views of datasets, taking also inspiration
from the search for approximate item sets in data mining, and the detection of communities in hierarchical
small worlds.∗
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1. Introduction

The human mind tries to make sense of a complex
set of data usually by conceptualizing it by some
means. Roughly speaking, it generally amounts to
putting labels on subsets of data that are judged to
be similar enough. Formal concept analysis25,24

offers a theoretical setting for defining the notion
of a formal concept as a pair made of (i) the set of
objects that constitutes the extension of the con-
cept and of (ii) the set of properties shared by these

objects and that characterize these objects as a
whole. This set of properties defines the intention
of the concept. Thus, particular subsets of objects
are associated with conjunctions of properties that
identify them in a bi-univoque way. This provides
a formal basis for data mining algorithms46.

Formal concept analysis exploits a relation that
links objects with properties. Such a relation
can be viewed as well as a bi-graph (or bipartite
graph), i.e. a graph having two kinds of vertices,
and whose links are only between vertices of dif-

∗This paper is a fully revised and expanded version of a conference paper28. In particular, Sections 4 and 5 are new.
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ferent kinds.

Besides, the discovery that real-world complex
networks from many different domains (linguis-
tics, biology, sociology, computer science, ...) are
sharing some non-trivial characteristics has raised
a considerable interest53,3,42,26. These networks
are indeed sparse, highly clustered, and the aver-
age length of shortest paths is rather small with
regard to the graph size53, hence their name of
“small worlds”. Moreover, most of parameters,
and in particular their vertices degree, follow a
power-law distribution4,42, which acknowledges a
hierarchical organization. One of the most active
fields of this new network science concerns the
problem of graph clustering48,23. This problem is
often called “community detection” in the litera-
ture due to its application to social networks.

Intuitively speaking, a cluster (or community)
corresponds to a group of vertices with a high den-
sity of internal links and only a few links with
external vertices. Nevertheless there is no uni-
versally accepted formal definition of a cluster23

and making a parallel with formal concept anal-
ysis may provide some relevant views for defin-
ing graph clusters. Many real-world large net-
works are bipartite and it has been shown that
such networks also share properties similar to the
above-mentioned ones38. While clustering is usu-
ally done on projected graphs, some authors ad-
dress the problem of community detection directly
on bipartite networks5,39. Besides, techniques in-
spired from formal concept analysis have been
also used for detecting human communities in so-
cial bipartite networks50.

The purpose of this paper is first to investi-
gate the parallel between formal concept analysis
and the graph-based detection of communities in
bipartite graphs. In fact, we do not restrict our-
selves here to standard formal concept analysis,
but we rather consider an enlarged setting that in-
cludes new operators17,19. This setting includes
the classical Galois connection that is at the ba-
sis of the definition of formal concepts, but also
another connection that characterizes independent
sub-contexts. This is the graph counterpart of this
enlarged setting that is discussed here from a bi-

partite graph point of view. Moreover, extensions
of this setting which allows various forms of ap-
proximations of formal concepts and sub-contexts
are then paralleled and compared with methods
used in bi-graph clustering.

The paper is organized as follows, the basic
elements of formal concept analysis are first re-
stated and the other operators are introduced in
Section 2. Then, after a short background on
graphs, it is shown in Section 3 that a formal con-
cept corresponds to a maximal bi-clique in a bi-
graph, while conceptual worlds (i.e., independent
sub-contexts), obtained by the second connection,
correspond to disconnected sub-parts in the graph.
Then different ways of introducing various types
of approximation, or gradualness, in formal con-
cept analysis, data mining, or in community detec-
tion are reviewed in Section 4, before discussing
and illustrating their counterpart in the bi-graph
setting by proposing a two step clustering proce-
dure in Section 5.

2. Extended formal concept analysis

Let R be a binary relation between a set O of ob-
jects and a set P of Boolean properties. We note
R = (O,P,R) the tuple formed by these objects
and properties sets and the binary relation. It is
called a formal context25. The notation (x,y) ∈ R
means that object x has property y. Let R(x) =
{y ∈ P|(x,y) ∈ R} be the set of properties of ob-
ject x. Similarly, R−1(y) = {x ∈ O|(x,y) ∈ R} is
the set of objects having property y.

Formal concept analysis25 defines two set op-
erators, here denoted (.)∆, (.)−1∆, called intent
and extent operators respectively, s.t. ∀Y ⊆ P and
∀X ⊆O :

X∆ = {y ∈ P|∀x ∈ X ,(x,y) ∈ R} (1)

Y−1∆ = {x ∈O|∀y ∈ Y,(x,y) ∈ R} (2)

X∆ is the set of properties possessed by all objects
in X . Y−1∆ is the set of objects having all proper-
ties in Y . These two operators induce an antitone
Galois connection between 2O and 2P. This means
that the following property holds

X ⊆ Y−1∆⇔ Y ⊆ X∆.
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A pair such that X∆ =Y and Y−1∆ =X is called
a formal concept25. X is its extent and Y its intent.
In other words, a formal concept is a pair (X ,Y )
such that X is the set of objects having all proper-
ties in Y and Y is the set of properties shared by all
objects in X . It can be shown that formal concepts
correspond to maximal pairs (X ,Y ) such that

X×Y ⊆ R.

A recent parallel between formal concept anal-
ysis and possibility theory17 has led to emphasize
the interest of three other remarkable set operators
(.)Π, (.)N and (.)∇. These three operators and the
already defined intent operator can be written as
follows, ∀X ⊂O :

XΠ = {y ∈ P|R−1(y)∩X 6= /0} (3)

XN = {y ∈ P|R−1(y)⊆ X} (4)

X∆ = {y ∈ P|R−1(y)⊇ X} (5)

X∇ = {y ∈ P|R−1(y)∪X 6= O} (6)

Note that (5) is equivalent to the definition of op-
erator (.)∆ in (1). XΠ is the set of properties that
are possessed by at least one object in X . XN is the
set of properties such that any object that satisfies
one of them is necessarily in X . X∆ is the set of
properties shared by all objects in X . X∇ is the set
of properties that some object outside X misses.

It is usually assumed that the relation R is
such that R−1(y) 6= /0 and R−1(y) 6= O (“bi-
normalization”), which respectively means that
there is no property y that is possessed by no ob-
ject, or by all objects. It guarantees that XN ⊆ XΠ

and X∆ ⊆ X∇ hold, as expected.
Operators (.)−1Π, (.)−1N , (.)−1∆ and (.)−1∇

are defined similarly on a set Y of properties by
substituting R−1 to R and by inverting O and P.
(Y )−1Π, (Y )−1N , (Y )−1∆ and (Y )−1∇ are respec-
tively, i) the set of objects having at least one prop-
erty in Y , ii) the set of objects whose properties
are all in Y , iii) the set of objects that have all the
properties in Y , and iv) the set of objects that are
missing at least one property outside Y . Moreover,
we also assume the bi-normalization of R for ob-
jects, namely R(x) 6= /0 and R(x) 6=P, i.e., no object
misses all properties or has all properties.

These new operators lead to consider a new
connection18,16 that corresponds to pairs (X ,Y )
such that XΠ = Y and Y−1Π = X (or equivalently)
such that XN = Y and Y−1N = X , while (.)∇ and
(.)∆ lead to the same remarkable pairs which de-
fine formal concepts. But pairs (X ,Y ) such that
XΠ = Y and Y−1Π = X do not define formal con-
cepts, but rather independent sub-contexts. In-
deed, it has been recently shown16,18 that pairs
(X ,Y ) of sets exchanged through the new connec-
tion operators, are minimal subsets such that

(X×Y )∪ (X×Y )⊇ R,

just as formal concepts correspond to maximal
pairs (X ,Y ) such that

X×Y ⊆ R.

For instance, the pairs ({1,2,3,4},{g,h, i})
and ({5,6,7,8},{a,b,c,d,e, f}) in Figure 1 are
two independent sub-contexts, whereas pairs
({1,2,3,4},{g,h}), ({5,6},{a,b,c,d, f}) and
({5,6,7,8},{a,c,d}) are examples of formal con-
cepts. However, note that in general, it might be
the case that an independent sub-context in a bi-
nary relation R can still be further decomposed
into smaller sub-contexts.

Thus, in the setting of formal concept analy-
sis, by means of two companion connections, two
key aspects of the idea of clustering are at work.
On the one hand, independent sub-contexts are
characterized, and on the other hand inside each
sub-context, formal concepts (X ,Y ) are identified
where each pair (x,y) such that x ∈ X ,y ∈Y are in
relation (while no pair (x,y) such that x∈X ′,y∈Y ′

or x ∈ X ′,y ∈ Y ′ are in relation if (X ′,Y ′) and
(X ′,Y ′) two independent subcontexts). In partic-
ular, two formal concepts belonging to two dif-
ferent sub-contexts are clearly well-separated. A
recent discussion paper20 has indeed emphasized
a parallel between the characterizations of formal
concepts and sub-contexts in formal concept anal-
ysis and the characterization of fuzzy clusters in
the setting of the extensional fuzzy set approach34.
The relation with clustering is made still clearer
in the next section by providing a bipartite graph
reading of formal concept analysis.
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1 2 3 4 5 6 7 8
a × × × ×
b × ×
c × × × ×
d × × × ×
e ×
f × × ×
g × × × ×
h × × × ×
i ×

Figure 1: A formal context R and the corresponding bipartite graph.

3. Graph reading of formal concept analysis

Let us start by restating some graph theory defini-
tions. A graph is a pair of sets G = (V,E), where
V is a set of vertices and E a set of edges. In the
paper only undirected graphs will be considered,
it means that edges are unordered pairs of vertices.
A graph is bipartite if the vertex set V can be split
into two sets A and B such that there is no edge be-
tween vertices of the same set (in other words for
every edge {u,v} either u ∈ A and v ∈ B or u ∈ B
and v ∈ A). We note G = (A,B,E) such a graph
where A and B constitute two classes of vertices.

A vertex v is a neighbour of a vertex u if
{v,u} ∈ E, we say that u and v are adjacent. Γ(u)
is the set of neighbours of a given vertex u, it is
called neighbourhood of u. An ordinary graph is
complete if every couple of vertices from V ×V
are adjacent. A bi-graph is complete if every cou-
ple of vertices from A×B are adjacent.

An induced subgraph on the graph G by a
set of vertices S is a graph composed of a vertex
set S ⊆ V , and an edge set E(S) that contains all
vertices of E that bind vertices of S (∀u,v ∈ S,
{u,v} ∈ E ⇔ {u,v} ∈ E(S)). A set of vertices
S that induces a complete subgraph is called a
clique. If no vertex could be added to this induced
subgraph without loosing the clique property then
the clique is maximal. It is straightforward that ev-
ery subgraph of a bi-graph is still bipartite, every
vertex keeping the same class. A set of vertices
S that induces a complete subgraph (in a bipartite
sense) on a bi-graph G is called a bi-clique and if
no vertex could be added without loosing this bi-
clique property then the bi-clique is maximal.

A path from a vertex u to a vertex v is a se-
quence of vertices starting with u and ending with
v and such that from each of its vertices there ex-
ists an edge to the next vertex in the sequence.
The length of a path is the length of this vertices
sequence minus one (it is to say the number of
edges that run along the path). Two vertices are
connected if there is a path between them. We
note Sk the set of vertices connected to at least
one vertex of S with a path of length smaller or
equal to k. By definition S0 = S. One can observe
that ∀k,Sk ⊆ Sk+1. S∗ is the set of vertices con-
nected to at least one vertex of S with a path of
any length, we have S∗ =

⋃
k>0 Sk. Two vertices

are disconnected if there is no path between them.
Two subsets A,B of vertices are disconnected if
every vertex of A is disconnected from any ver-
tex of B. A subset of vertices S is connected if
there is a path between every pair of vertices of S,
An induced subgraph that is connected is called a
connected component. If no vertex could be added
to this induced subgraph without loosing the prop-
erty of connectedness then the connected compo-
nent is maximal. Note that often “connected com-
ponent” is used for speaking of a “maximal con-
nected component”.

3.1. From formal context to bi-graph

For every formal context R = (O,P,R), we can
build an undirected bi-graph G = (Vo,Vp,E) s.t.
there is a direct correspondence between: the set
of objects O and a set Vo of “o-vertices”, the set of
properties P and a set Vp of “p-vertices”, and be-
tween the binary relation R and a set of edges E. In
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other words, there is one o-vertex for each object,
one p-vertex for each property, and one edge be-
tween an o-vertex and a p-vertex if and only if the
corresponding object possesses the corresponding
property (according to R).

The four operators (.)Π, (.)N , (.)∆ and (.)∇

can be redefined for a set of vertices in this graph
framework by replacing, in equations (3) to (6),
O by Vo, P by Vp and R−1(y) by Γ(y). Operators
(.)Π and (.)∆ can also be rewritten in the following
way:

XΠ = ∪x∈X Γ(x) (7)

X∆ = ∩x∈X Γ(x) (8)

These notations are interesting since only the
neighborhood of vertices of X is involved. It per-
mits to immediately understand operators (.)Π and
(.)∆ in terms of neighborhood in the bi-graph: XΠ

is the union of neighbors of vertices of X whereas
X∆ is the intersection of these neighbors. Note that
with this writing and interpretation there is no dif-
ference between (.)Π and (.)−1Π neither between
(.)∆ and (.)−1∆.

Graph interpretations of (.)N and (.)∇ are less
straightforward, nevertheless XN can be under-
stood as the union of neighbors of vertices of X
that have no neighbors outside of X . In other
words it is the set of vertices exclusively con-
nected with vertices of X (but not necessarily all).
Whereas X∇ is −if we ignore vertices of X− the
set of p-vertices not connected to all o-vertices.

3.2. Two views of graph clusters in terms of
connections

The connections induced by (.)∆ and (.)Π can also
be understood in the graph setting framework. On
the bi-graph G = (Vo,Vp,E), with X ⊆ Vo and
Y ⊆Vp:

Proposition 1 X = Y−1∆ and Y = X∆, iff X ∪Y is
a maximal bi-clique.

Proof. Let (X ,Y ) be a pair such that X = Y−1∆

and Y = X∆. For all x ∈ X and y ∈ Y , as Y =

∩x∈X Γ(x) we have y ∈ Γ(x) thus {x,y} ∈ E. It

means that the subgraph induced by X ∪Y is com-
plete. Moreover there is no vertex that are adja-
cent to all vertices of X (resp. Y ) which are not
in X∆ (resp. Y−1∆), therefore X ∪Y is a maximal
bi-clique.

If X ∪Y is a maximal bi-clique, every vertex of
X (resp. Y ) is adjacent to any vertex of Y (resp. X)
and there exists no vertex that is adjacent to all ver-
tices of X (resp. Y ) which are not in Y (resp. X),
therefore it is straightforward that Y = X∆ (resp.
X = Y−1∆).

Proposition 2 For a pair (X ,Y ) the two following
propositions are equivalent:

1. X = Y−1Π and Y = XΠ.

2. (X ∪Y )∗ = (X ∪Y ) and
∀v ∈ (X ∪Y ), Γ(v) 6= /0.

Proof. 1⇒ 2. By definition (X ∪Y )⊆ (X ∪Y )∗.
We show by recurrence that (X ∪Y )∗ ⊆ (X ∪Y ).
(X ∪Y )0 ⊆ (X ∪Y ) is given by definition. We
then assume that it exists k such that (X ∪Y )k ⊆
(X ∪Y ). We can notice that (X ∪Y )k+1 ⊆ ((X ∪
Y )k)1, by considering that a k + 1 long path is a
path of length k followed of a one edge setp. So
(X ∪Y )k+1 ⊆ (X ∪Y )1. But as X = Y−1Π and
Y = XΠ all vertices connected to X ∪Y with a path
of length 1 are in X ∪Y . So (X ∪Y )k+1 ⊆ (X ∪Y ).
This implies by recurrence that ∀k > 0,(X ∪Y )k ⊆
(X∪Y ). Thus (X∪Y )∗=

⋃
k>0(X∪Y )k ⊆ (X∪Y ).

We still have to show that any vertex v of X∪Y has
at least one neighbour, which is straightforward if
we consider that either v ∈ XΠ or v ∈ Y−1Π.

2 ⇒ 1. We show that X = Y−1Π, the proof
is exactly the same for Y = XΠ. Y−1Π is the
set of vertices adjacent to one vertex of Y , so
Y−1Π⊂Y ∗ and then Y−1Π⊂ (X∪Y )∗. That means
that Y−1Π ⊂ (X ∪Y ), but as the graph is bipartite:
Y−1Π⊂X . Let x be a vertex of X , x has at least one
neighbour v, v is in X∗ and therefore in (X ∪Y )∗,
so v ∈ X ∪Y , but the graph is bipartite, so v ∈ Y .
It’s then straightforward that X ⊂ Y−1Π and there-
fore X = Y−1Π.

A set S such that S∗ = S is not exactly a max-
imal connected component but it is a set of ver-
tices disconnected from the rest of the graph. So if
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there is no strict subset S′ of S satisfying S′∗ = S′

it means that there is no subset of S disconnected
from other vertices of S. In other words, S is con-
nected and then S is a maximal connected compo-
nent. Therefore, the following property:

Proposition 3 For a pair (X ,Y ) the two following
propositions are equivalent:

1. X =Y−1Π and Y = XΠ and there is no strict
subset X ′ ⊂ X and Y ′ ⊂ Y such that X ′ =
Y ′−1Π,Y ′ = X ′Π.

2. X ∪Y is a maximal connected component
(which counts at least 2 vertices).

According to Prop. 1-3, it is worth noting
that the two Galois connections correspond to ex-
treme definitions of what a cluster (or a commu-
nity) could be:

1. a group of vertices with no link missing in-
side.

2. a group of vertices with no link with out-
side.

One the one hand a maximal bi-clique is a maxi-
mal subset of vertices with a maximal edge den-
sity. Vertices cannot be moved closer, and in that
sense one can not build a stronger cluster. On the
other hand, a set of vertices disconnected from the
rest of the graph can not be more clearly separated
from other vertices. It corresponds to another type
of cluster. In fact, only the smallest of such sets
are really interesting, and they are nothing else
than maximal connected components. This two
extreme definitions were already pointed out for
clusters in unipartite graphs51.

4. Approximate conceptual structure:
comparative state of the art

Formal concepts correspond to maximal bi-
cliques, while independent sub-context corre-
spond to disconnected subparts. These two no-
tions may need to be relaxed for various reasons.
Motivations are mainly twofold: first data may be
noisy (some links in the graph may be missing or
wrongly present), secondly one may need to have
a simplified view of the set of concepts at work in

the data. The first motivation is the one which is
the most frequently emphasized in the literature.
However in some sense any exceptional piece of
data, even if there is no doubt about its validity,
may be considered as contributing some “noise”
that blurs the picture and prevents to have a sim-
plified image of the data. This suggests to forget
some “details” in order to summarize the infor-
mation more easily. For instance, one may forget
an edge because it simplifies the view by discon-
necting weakly connected parts (for example the
link (4,d) in Figure 2), or introduce some miss-
ing edges in order to reinforce the connectedness
inside a potential cluster (missing links (1,h) and
(5,c) for example in Figure 2) and lay bare a sim-
pler and more general concept.

Such ideas are encountered in formal concept
analysis, when looking for relevant, or for ap-
proximate / pseudo formal concepts, but have also
counterparts in other areas such as frequent item
set mining, or in graph clustering (also now known
as “community detection” problem). In this sec-
tion, we provide an overview of the existing liter-
ature in these different areas, starting with formal
concept analysis. We end the section by consider-
ing different weighted extensions of formal con-
cept analysis, where the weights bearing on the
links between objects and properties may provide
an indication of the importance of the link for de-
ciding if we keep it, or we cut it in an approxima-
tion process.

4.1. Relevant or approximate formal concepts

A first line of research for simplifying a set of for-
mal concepts which tend to be large (especially
when data are noisy) is to select the relevant con-
cepts only by means of appropriate measures35.
The stability measure36,32 is the most commonly
used. The stability measure is all the greater for
a concept (X ,Y ) as more subsets of X are such
that X∆ = Y . This means in practice that the ob-
jects have not in general common properties out-
side Y , or in other words the concept is likely to
be “stable” if one remove some objects. These ap-
proaches only select relevant concepts among the
whole set of existing ones. So they cannot produce
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1 2 3 4 5 6 7 8
a × × × ×
b × ×
c × × ×
d × × × × ×
e ×
f × × ×
g × × × ×
h × × ×
i ×

Figure 2: R′: Relation R modified and the corresponding bi-graph.

larger approximate concepts that would cover con-
cepts that are distinct due to some missing links.
One may think of doing that either by defining ap-
proximate formal concepts, or by using fuzzy for-
mal concepts.

Defining an approximate formal concept can
be done in a rather straightforward manner. Indeed
the definition of X∆ may be softened by looking
for the set of properties shared by “most” objects
in X rather than all. It leads to define18 an oper-
ator X∆,k which allows for at most k exceptions
among objects (provided that X has more than k
elements). Namely,

X∆,k =
{

y∈P |∃K⊆X , |K|= k, (X−K)⊆R−1(y)
}

Likewise, we can define Y ∆, j = {x ∈ O|∃K′ ⊆
Y, |K′| = j,(Y −K′) ⊆ R(x)}. Then, an approx-
imate formal concept is a pair (X ,Y ) such that
Y = X∆,k and X = Y ∆, j. While a formal con-
cept (X ,Y ) corresponds to the Cartesian product
X ×Y , an approximate formal concept thus may
have at most k holes by column and at most j
holes by line. This idea is at work in data min-
ing when looking for error-tolerant (closed) item-
sets, see the next Section 4.2. Similarly one may
think of defining approximately independent sub-
contexts (X ′,Y ′) and (X ′,Y ′) by tolerating a lim-
ited number of elements in (X×Y ′)∪ (X ′×Y ′).

In a related spirit, another approach consists in
looking for pseudo concepts44. Pseudo concepts
are a way to enlarge formal concepts: indeed a set
of objects X is associated with a set of primary
properties Y , and with a secondary set of proper-

ties such that a majority of the objects are associ-
ated with the properties in this latter set.

4.2. Looking for error tolerant itemsets

Methods for mining association rules1,52 look for
sets of items that are frequently present together
in a transaction database. The search for item-set
can be related to formal concept analysis46. In that
perspective, the transaction database is viewed as
a formal context where each transaction stands for
an object and each item in this transaction corre-
sponds to a property satisfied by the object. Then
the intent of each formal concept corresponds to
a closed item-set. Then frequent item-set can be
found by pruning the lattice of the formal con-
cepts. In particular the rule: Y0 ⇒ Y \Y0 has no
exception iff ((Y0)

−1∆)∆ = Y where Y0 ⊂ Y .
The presence of noise in data has led to the

development of different ways of finding error-
tolerant itemsets30. Roughly speaking, the idea
is to no longer require that every item in a fre-
quent item set appears in each supporting trans-
action. This idea is very close of the idea of toler-
ating “holes” in format concept (which are max-
imal rectangles included in the formal context).
As already said for approximate formal concept,
it is not only the proportion of holes in the rect-
angle which matters but also their relative posi-
tions. Similar issues can be found with error-
tolerant itemsets where one distinguishes weak
error-tolerant itemsets and strong error-tolerant
itemsets54. In the former tolerance is global, while
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in the latter the number of possibly missing items
(of the considered itemset) is limited inside each
supporting transaction and the number of support-
ing transaction missing an item (of the consid-
ered itemset) is also limited. Moreover strong er-
ror tolerant itemsets may be further constrained
by requiring that a given proportion of support-
ing transactions include all items (of the consid-
ered itemset)10.

Besides, once the error-tolerant itemsets are
obtained, one may think of merging them (by tak-
ing their union) on a similarity basis in order to
reduce their number. Similarity may be judged by
requiring that the result of the merging is a strong
error-tolerant itemset with respect to some toler-
ance thresholds9.

4.3. Community detection in hierarchical
small world

There is a large amount of literature about graph
clustering51,23, especially since the emergence of
so-called community detection problem42. Most
of these works concern unipartite graphs. How-
ever such graphs are often obtained from bipar-
tite ones (for example co-authoring graph between
authors are based on the author-paper bipartite
graph). Some authors prefer to address the clus-
tering problem on bipartite graphs rather than on
unipartite graph projections (where a part of the
information is lost). In the following we briefly
review existing graph clustering methods that have
been adapted for bipartite graphs.

The classical graph partitioning problem33

consists in splitting the vertex set in a given num-
ber of nearly equally-sized subsets such that the
number of edges binding two vertices belonging to
two different groups (ie. the cut size) is minimal.
This view has traditional applications in problem
such as electronic circuit partitioning or load bal-
ancing in parallel computing. However it has also
been applied to finding conceptual clusters in both
unipartite and bipartite graphs14. The main draw-
back of this approach is that the number of clusters
has to be known a priori, which makes sense for
example in parallel computing when the number
of resources is known. However when clustering

communities, the number of clusters is usually un-
known. In addition, as mentioned by Newman43

the minimal cut argument is maybe a too naive
approach to find “natural” structures in networks
(some edges may be more significant than other
according to the graph structure).

The modularity is a more complex quality
measure of graph vertices partitioning. It is equal
to the number of edges contained inside each clus-
ter minus the same number for a graph built by
rewiring vertices randomly but preserving their in-
cidence degree. One looks for a partition that
maximizes this modularity measure. This also
amounts to minimize the number of edges between
cluster minus the same number in the same ran-
domly rewired graph. It was initially introduced
by Newman and Girvan42 as an argument to select
a particular cut in a dendrogram (resulting from
a hierarchical clustering algorithm). It has then
been used as an objective function in various op-
timizing algorithm11,7. Different bipartite adapta-
tions of this quality measure has been proposed
recently5,29,40.

Another common approach for graph cluster-
ing consists in using random walks. The intu-
itive idea is that random walk reveal the graph
structure. Indeed more precisely, a random walker
tends to be trapped into clusters since once in-
side a cluster the probability of getting out is
low. This is because there are only few paths
that would enable the walker to go out, and many
paths that remain inside the cluster. This has been
used for computing similarity degrees between
graph vertices26,27 which are then used for build-
ing clusters47 (this algorithm has been adapted to
bipartite graph clustering41). This same idea may
also been used in a different way for defining qual-
ity measures of a partition of graph vertices13,49.
Such quality measure is then used as an objec-
tive function in optimizing algorithms for obtain-
ing a partition of the graph into clusters. The qual-
ity measure proposed by Rosvall and Bergstrom49

seams especially promising37, but as not be yet ap-
plied to bipartite graphs.

Another family of approaches views cliques as
kernels of potential communities. A first idea is
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to look for adjacent cliques. It is illustrated by the
well known method CFinder45 which defines clus-
ters as chains of adjacent k-cliques (a k-clique is
a complete subgraph of size k, and two k-cliques
are adjacent iff they have -at least- k− 1 vertices
in common). This method has been adapted to
bipartite graphs39: clusters become chains of ad-
jacent Ka,b-bicliques. A Ka,b-biclique is a com-
plete subgraph of a o-vertex and b p-vertex and
two Ka,b-bicliques are adjacent if they share a−1
o-vertex and b− 1 p-vertex. It is worth noting
that all maximal bicliques that count more than a
o-vertices and b p-vertices are made of adjacent
Ka,b-bicliques. In other words, each (big enough)
maximal bi-clique is contained in a cluster (while
maximal bi-cliques that are too small are ignored).
Other approaches based on cliques work in more
global way. Some authors have proposed to per-
form an agglomerative hierarchical clustering al-
gorithm over edges (ie. 2-cliques) of uni-partite
graphs2. It has been also proposed to transform
a uni-partite graph into the graph of its k-cliques
and then to compute a partitioning of the optain
graph22,21.

Apparently ignored by the above proposals, an
older method is worth mentioning31. It starts with
a bipartite graph for which one computes all the
maximal cliques, then a bipartite graph is built by
associating these maximal cliques to one of the
two vertex sets. Finally this new graph is parti-
tioned by minimizing the cut size.

In all these clique-based methods, the clusters
of vertices that are obtained are allowed to over-
lap (since it is expected that individuals may be-
long to several communities). As emphasized by
Hu et al.31 the methods working with cliques bet-
ter preserve the maximal cliques which constitute
the core of communities, while all the previously
presented methods that focus on vertices may split
these meaningful maximal cliques.

4.4. Weighted extensions of formal concept
analysis

There are several good reasons for having a
weighted formal context, i.e. a context where the
links between objects and properties are weighted.

Indeed, the weights may be understood in two dif-
ferent ways. First they may reflect the idea of
allowing the properties to be a matter of degree.
Another type of weights correspond to the situa-
tion where the properties remains binary but are
pervaded with uncertainty. In both cases, this sup-
poses that the information about the gradedness, or
the uncertainty, is available. The first way, which
has been the most investigated until now, amounts
to consider that objects may have properties only
to a degree. Such fuzzy formal concept analysis6

is based on the operator :

X∆(y) =
∧

x∈O
(X(x)→ R(x,y)) (9)

where now R is a fuzzy relation, and X and X∆

are fuzzy sets of objects and properties respec-
tively, and

∧
denotes the min conjunction oper-

ator and → an implication operator. A suitable
choice of connective (the residuated Gödel impli-
cation: a → b = 1 if a 6 b, and a → b = b if
a > b) still enables us to see a fuzzy formal con-
cept in terms of its level cuts Xα ,Yα such that
(Xα ×Yα)⊆ Rα where Xα ×Yα are maximal, with
Rα = {(x,y)|R(x,y) > α}, Xα = {x ∈ O|X(x) >
α}, Yα = {y ∈ P|Y (y)> α}.

Another way16,15 is related to the idea of un-
certainty. The possibilistic manner of representing
uncertainty here is to associate with each link (x,y)
a pair of number (α,β ) such as α,β ∈ [0,1] and
min(α,β ) = 0 expressing respectively to what ex-
tent it is certain that the link exist (α) and does not
exist (β ). A link in a classical formal context cor-
responds to a pair (1,0), the absence of a link to
the pair (0,1) and the pair (0,0) models complete
ignorance on the existence or not of a link. On this
basis a link may be all the more easily added (resp.
deleted) as α (resp. β ) is larger.

One may also consider that a formal concept in
a formal concept some properties are less impor-
tant, or that some objects are more typical15. Then
weights are no longer put on links or edges, but
rather on the nodes. Thus forgetting a non com-
pulsory property (e.g. the ability to fly for a bird)
may help building a larger concept (e.g. birdness,
although typical birds fly). Forgetting an object or
a property also suppresses links, which may also
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help obtaining disconnected subparts.
These three views require different kinds of

additional knowledge which are not often avail-
able, especially in large data sets. Moreover
the two last views have been only recently intro-
duce and have not been yet investigated in de-
tail. However such weights may provide an help
for building larger formal concepts and smaller
sub-contexts. We shall see a way of producing
weights by exploiting the structure of a binary re-
lation through a diffusion process; see Section 5.2.

5. Looking for an approximate conceptual
view of data

We have reviewed different trends of research aim-
ing either at defining approximate concepts, sub-
contexts, closed itemsets, or at clustering com-
munities in bipartite graphs. Among these meth-
ods, some focus on the identification of what may
be retrospectively understood as approximate in-
dependent sub-contexts, while others rather look
for approximate (formal) concepts. Indeed some
methods partition the bipartite graph into non-
overlapping subgraphs, while the others use for-
mal concepts (or bi-cliques) for building larger
groups (which are still allowed to overlap). We
recognize here the two views for characterizing
clusters (no link with outside vs. no missing link
inside, see section 3.2). The partitioning methods
suppress (or forget) links that are judged unimpor-
tant, whereas approximate concept methods tend
to add (or to compensate) missing links.

It is worth noticing that the reviewed methods
adopt one point of view (either looking for sub-
contexts that are as much as possible independent,
or approximate concepts that are as dense as possi-
ble). But none of these methods may both add and
suppress links (depending in situation), at least in
the initial context. However, there exists a two
step approach that first looks for the concepts in
the initial context, and then try to partition the set
of concepts obtained. This may be done by consid-
ering the meta-context built from the links relating
concepts and the objects of there extents and look-
ing for approximatively independent sub-context

in this meta-context, or doing the same in terms
of bipartite graph31. Moreover from a formal con-
cept analysis point of view, it would seem natu-
ral to look first for approximate independent sub-
contexts and then inside each of these sub-contexts
to look for the concepts.

Generally speaking, one may think of two
types of approaches for identifying meaningful
clusters (or communities), namely the ones that
try to modify the initial context (by suppressing
or adding links) in order to simplify the result-
ing clusters, and the ones that rather start from
the set of concepts associated to the initial context
and then try to simplify this set (for instance, by
gathering or selecting relevant concepts). The first
ones require some evaluation of the links in order
to be able to decide to add or suppress them, while
the second type of methods need some measure of
the goodness of what is produced.

In the following, we present a two-step pro-
cedure that aims at providing a simplified, struc-
tured view of a set of data. These two steps corre-
spond respectively to the two types of approaches
mentioned above. The first step uses a random
walk method for transforming the initial context
into a graded one. This graded context is in turn
reduced to a simplified binary context that is ex-
pected to have a smaller number of formal con-
cepts. The second step then tries to merge together
sets of concepts that overlap sufficiently. Before
discussing this two-step procedure, we introduce
the use of random walks, which also leads to a
worth-noticing parallel with extended versions of
formal concept analysis.

5.1. Random walks and formal concept
analysis

A large panel of approaches developed within
community detection literature use random walks
for identifying communities. As already men-
tioned in Section 4.3, the underlying idea is that
random walkers tend to be trapped inside com-
munities. Let us consider a random walk8 on
a bipartite-graph. In the following we continue
to use the formal concept analysis notations tak-
ing advantage of the strict parallel with bipartite
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graphs established in section 3.1. The relation R
is now replaced by a probabilistic transition ma-
trix for going from a vertex x to a vertex y, or
conversely. The probability is generally equally
shared between the edges directly connected to the
starting vertex. Let Px→y be the probability for go-
ing from a vertex x ∈O to a vertex y ∈ P, formally
defined as follows:

Px→y =

{ 1
|R(x)| if (x,y) ∈ R,

0 elsewhere,
(10)

where R(x) is the set of properties verified by x.
Let X(x) be the probability for a random walker to
be in vertex x ∈ O at a given step; the probability
XP(y) to reach a vertex y ∈ P at the next step is
given by:

XP(y) = ∑
x∈O

X(x).Px→y (11)

Similarly when going from a property vertex
to an object vertex we have the following equa-
tions:

Py→x =

{
1

|R−1(y)| if (x,y) ∈ R,
0 elsewhere,

(12)

Y P(x) = ∑
y∈P

Y (y).Py→x (13)

where Y (y) is the probability for a random walker
to be in vertex y ∈ P at a given step.

The equations (11) and (13) correspond to a
one step walk between an object and a property.
More generally, a walk with an odd number of
steps links objects and properties. The probability
to reach a property from an object (or conversely
an object from a property) after an odd number of
t steps can be computed by composing t times the
operator (.)P. For t being an odd number, let Pt

x→y
(resp. Pt

y→x) be the probability to reach a prop-
erty y from an object x (resp. an object x from an
property y) in t steps.

One can show26,27 that when t tends to in-
finity, Pt

x→y no more depends on the starting ver-
tex x. However, the dynamics of the convergence
towards this limit clearly depends on the start-
ing node. Indeed, the trajectory of the random
walker is completely governed by the topology of

the graph: after t steps, any vertex y located at a
distance of t links can be reached. The probabil-
ity of this event depends on the number of paths
between x and y, and the degree (i.e. number of
neighbours) of each vertex along those paths. The
more interconnections between these vertices, the
higher the probability of reaching y from x. There-
fore, for a small t, Pt

x→y reveals “how far” is y from
x. This idea is used in the next section to compute
a weight for each pair of object and property.

With regard to formal concept analysis, there
is a worth noticing parallel between the “diffu-
sion” operator at the basis of random walk meth-
ods and graded extensions of (the possibility the-
ory reading of) formal concept analysis operators.
Indeed equations (11) and (13) can formally be
paralleled with the formula defining the operator
at the basis of the definition of a formal concept6:

X∆(y) = min
x∈O

X(x)→ R(x,y) (14)

and with the formula of the operator inducing in-
dependent sub-contexts19:

XΠ(y) = max
x∈O

X(x)∗R(x,y) (15)

where R may be graded, as well as X , XΠ and X∆

and where an usual choice for ∗ is min, and a resid-
uated implication for→.

This parallel between operators may be fur-
ther extended between definitions of concepts and
communities as stable points for these operators.
Some random walk approaches define clusters as
sets of vertices almost stable in the sense that a
random walker tends to stay inside them13,49. In
formal concept analysis, a formal concept is also
a stable set for the Galois connection operator
(X∆∆ = X and Y−1∆−1∆ = Y ).

Nevertheless, we do not intend in the follow-
ing to compute a probabilistic substitute to the
notion of formal concept. We rather compute
a weighted counterpart of the considered formal
context by using random walks for assessing the
importance of links between objects and proper-
ties.
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5.2. A two-step procedure

In the following, we propose a two-step proce-
dure aiming at providing an approximate concep-
tual view of data. It takes advantages of several
ideas coming from the previous comparative dis-
cussion of different research trends. Namely the
procedure first uses a random walk approach for
providing a weighted counterpart to the formal
context which is the basis of a heuristic method
for diminishing the number of formal concepts as-
sociated to the context. Then, in a second step,
the procedure merges formal concepts which are
sufficiently close.

5.2.1. Using random walks for assessing the
importance of edges

We propose to use a short random walk to attribute
a weight W (x,y) on each pair (x,y)∈O×P of ob-
ject and property:

W (x,y) =
1
2

(
P3

x→y +P3
y→x

)
(16)

The choice of random walk of length three
may be discussed. As seen in the previous sec-
tion, we have to use short random walks anyway.
Moreover the number of steps t have to be odd,
and if t = 1 only pairs (x,y) that are in R will have
a non null weight. It is why we use the smallest
informative number of steps, which has obvious
computational advantages.

So the result of this computation is to substi-
tutes a weighted context W to the original one R,
where the weights accounts for from of closeness.
It is clear that given a threshold s, one can extract
from W a binary relation R′:

R′ = {(x,y) ∈VO×VP|W (x,y)> s} (17)

This new formal context R′ is associated with inde-
pendent sub-contexts (if any) and with a lattice of
formal concepts. Table 1(a) provides the weighted
context W obtained from the example of Figure 2.
As can be seen, an appropriate choice of s (here,
e.g., s = 0.16) enables us to identify two approx-
imately independent sub-contexts, since (4,d) is
removed. It has also the effect of introducing

new links in the cells where the weight is suffi-
ciently high. For example the link (1,h) is added
; as a consequence concepts ({g},{1,2,3,4}) and
({g,h},{2,3,4}) are merged together into the new
formal concept ({g,h},{1,2,3,4}). If we look
at Figure 3 which shows the lattice of concepts
extracted from the relation of Figure 2 on which
the transformation from R′ to W has been applied
with different thresholds s, one observes that the
number of concepts diminishes with s. However,
there is no monotonic decrease in general. See
for instance Figure 4 which gives the number of
concepts in function of the threshold, where in
the visinity of 0.100 the number of concepts goes
from 8 to 10 and then to 9. We also observe in
Figure 3 that when the threshold is decreased too
much, the two independent sub-contexts no longer
exist (since for s = 0.10, (4,d) is no longer re-
moved). Note that independent sub-contexts are
easy to recognize in the lattice of concepts, since
they correspond to families of paths from the top
and the bottom formal concepts (with empty sets
of properties and objects respectively), which are
fully separated from the others.

In order to explore what values of the threshold
may be of interest for looking for approximately
independent sub-contexts, or for diminishing the
number of formal concepts, two landmark values
are of interest: let m be the weight of the worse of
the edges and M be the weight of the best of the
“non-edges” in the formal context. Namely,

m = min({W (x,y), ∀(x,y) ∈ R}) (18)

M = max({W (x,y), ∀(x,y) ∈ R}) (19)

One can note that if all edges have a larger
weight than all “non-edges” (i.e. M 6 m) then the
relation stay the same for any value of the thresh-
old in [M,m]. When m 6 M, the idea it to remove
some edges that have a weight lower than the best
“non-edges”, and to add some “non-edges” that
have a better score than the worst edges, by choos-
ing a threshold s ∈ [m,M]. In practice, one may
blindly take s = m+M

2 , or explore different values.
However, a better strategy seems to first look for
approximately independent sub-contexts by taking
a value close to M (see Table 1(b)), and then in
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(a) s = 0.20
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4 - i.g.h
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7 - a.c.d.e
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(b) s = 0.16

4 - i.d.g.h

2.3.4 - i.g.h

6.7.8 - a.b.c.d.e.f

5.6.7.8 - a.b.c.d.f

4.5.6.7.8 - d

- a.b.c.d.e.f.g.h.i

1.2.3.4 - g.h

1.2.3.4.5.6.7.8 -

(c) s = 0.10

Figure 3: Lattices of formal concepts for different values of the threshold (example of Figure 2, with W given in
Table 1(a).

each of the sub-contexts to diminish the threshold
progressively in order to increase the number of
edges and checking the corresponding number of
formal concepts.

As a matter of illustration, Table 2 gives the re-
sult of the transformation on a relation that corre-
sponds to the Southern Women Data Set12, a bipar-
tite graph between 18 women and 14 events that is
a standard example in social network analysis lit-
erature and in community detection literature. The
crosses in 2 (as well as in Table 1(b)) represent the
new relation R′ computed from W , and the cells
in gray are the ones that have been modified by
the transformation (to get back to the original re-
lation, one has just to swap cross and blank in each
of these gray cells). In 2, there are 67 formal con-
cepts in the original relation and only 22 with the
new relation.

5.2.2. Merging concepts

At the end of the previous step, it is expected to
have a simplified view of the original context in
terms of sub-contexts (when possible) and formal
concepts. However the number of formal con-
cepts may remain still too high with respect to user
needs. Indeed in the example 2 after the first step
there is still 22 formal concepts. In order to further
simplify the view one may complete the previous
procedure with a second step aiming at merging
“close” formal concepts.

For two concepts a = (Xa,Ya) and b = (Xb,Yb),
the inclusion value of a in b can be defined as fol-
lows:

inc
(
a,b
)
=
|Xa∩Xb||Ya∩Yb|
|Xa||Ya|

(20)

This can be extended to a set C of n concepts

s(C) = max({min({inc(a,b),∀a ∈C}),∀b ∈C}),
(21)

where s(C)> θ means that there is a concept b∈C
such that, for all concepts a ∈ C, θ% of a is in-
cluded in b. In other words, there exists a concept
in the set C that almost includes all concepts of the
set C.

In order to merge formal concepts, one may
apply the following standard agglomerative algo-
rithm :

1. each concept is in its own cluster,

2. for each pair of clusters, the score of their
union is computed,

3. if this maximal score is larger than the
threshold:

(a) a pair having maximal score is selected
and merged,

(b) loop to 2.

However, note that it does not necessarily lead
to a partition of the set of concepts that is op-
timal in the sense that it does not necessarily
maximize mini(s(Ci)) among all the n-partitions
{C1,C2, . . . ,Cn} of the set of formal concepts.
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Table 1: Modification of the relation permit to go from 13 to 11 concepts
(a) weighted relation W

1 2 3 4 5 6 7 8

a .048
�� ��.221

�� ��.252
�� ��.228

�� ��.224

b .034
�� ��.217

�� ��.225 .101 .157

c .041 .165
�� ��.213

�� ��.233
�� ��.204

d .037 .051 .051
�� ��.143

�� ��.211
�� ��.234

�� ��.216
�� ��.212

e .031 .070 .117
�� ��.279 .122

f .041
�� ��.226

�� ��.246 .136
�� ��.204

g
�� ��.352

�� ��.367
�� ��.367

�� ��.320 .013 .011 .013 .013

h .208
�� ��.304

�� ��.304
�� ��.300 .015 .013 .015 .015

i .062 .109 .109
�� ��.279 .031 .030 .031 .031

(b) R′ computed from W with s = 0.20
1 2 3 4 5 6 7 8

a × × × ×
b × ×
c × × ×
d × × × ×
e ×
f × × ×
g × × × ×
h × × × ×
i ×

Table 2: New relation from southern woman bipartite network after applying random walk transformation. Cells
in gray are the ones affected by the transformation.

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14
Ev. × × × × × × × ×
La. × × × × × × × ×
Th. × × × × × × × ×
Br. × × × × × × × ×
Ch. × × × ×
Fr. × × × ×
El. × × × ×
Pe. × ×
Ru. × × ×
Ve. × ×
My. × × × ×
Ka. × × × × × ×
Sy. × × × × × × ×
No. × × × × × × × ×
He. × × × × × × ×
Do. × × × ×
Ol. × ×
Fl. × ×
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Figure 4: Number of formal concepts (including the bottom and top trivial ones) in function of the threshold
applied to the weighted relation W of the formal context in Figure 2.

Table 3 provides the result of this second step
on the women social network example. Finally, 7
non trivial formal concepts are retained. Clearly,
a threshold θ too small may lead to an oversim-
plification of the formal context, as in the initial
example, see Table 4, where each (approximately)
independent sub-context becomes a unique formal
concept for θ = 0.4. It is worth noticing that this
second step still preserves a structured view, since
one may keep the benefit of the lattice of concepts
restricted to the “father” concepts of each group of
concepts (which approximately include the other
concepts in their group). Besides, other criteria
(e.g., the relative size) may be used for a further
selection in the set of formal concepts, if too many
formal concepts remain in the result of this second
step.

6. Conclusion

Starting with a view of a formal context as a
bi-graph, the paper has shown that formal con-
cepts correspond to the idea of maximal bi-
cliques, whereas independent sub-contexts, ob-

tained thanks to the introduction of another con-
nection, correspond to disconnected subsets of
vertices. Noticeably enough, these two constructs
reflect two ideal views of the idea of graph cluster,
namely a set of vertices with no link missing in-
side and a group of vertices with no link with out-
side. The last part of the paper, after a review of
different ways of getting approximate structured
views of a formal context, or equivalently of clus-
tering a bipartite graph, has outlined a two-step
procedure for laying approximately independent
sub-contexts if any, and simplifying the lattice of
the formal concepts. The first step of the proce-
dure takes advantage of random walks methods for
introducing a closeness estimation of the vertices
(or equivalently of the pairs (object, property) in
the formal context), the second step merges formal
concepts that are approximately included. Clearly,
by bridging different areas, this overview paper
has discussed several ideas that are worth of fur-
ther investigation, and the procedure that has been
outlined for clustering bipartite graphs may be still
refined and improved after a proper evaluation.
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Table 3: θ = 0.6, Final clusters are : (E9.E11, No.He.Ol.Fl.), (E3.E4.E5.E7,
Ev.La.Th.Br.Ch.Fr.El.), (E9.E7.E8, Ev.La.Th.Br.Ch.El.Ru.Sy.No.), (E7.E8.E9.E10.E11.E12.E13.E14,
My.Ka.Sy.No.He.Do.), (E1.E2.E3.E4.E5.E6.E7.E8, Ev.La.Th.Br.Fr.El.) and (E9.E8,
Ev.La.Th.Br.Fr.El.Pe.Ru.Ve.My.Ka.Sy.No.He.Do.Ol.Fl.)

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14
Ev. × × × × × × × ×
La. × × × × × × × ×
Th. × × × × × × × ×
Br. × × × × × × × ×
Ch. × × × ×
Fr. × × × ×
El. × × × ×
Pe. × ×
Ru. × × ×
Ve. × ×
My. × × × ×
Ka. × × × × × ×
Sy. × × × × × × ×
No. × × × × × × × ×
He. × × × × × × ×
Do. × × × ×
Ol. × ×
Fl. × ×

Table 4: θ = 0.4, Final clusters are : (1.2.3.4, igh) and (5.6.7.8, abcdef)
1 2 3 4 5 6 7 8

a × × × ×
b × ×
c × × ×
d × × × ×
e ×
f × × ×
g × × × ×
h × × × ×
i ×
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