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Abstract. In this paper we deal with data stated under the form of a
binary relation between objects and properties. We propose an approach
for clustering the objects and labeling them with characteristic subsets
of properties. The approach is based on a parallel between formal con-
cept analysis and graph clustering. The problem is made tricky due to
the fact that generally there is no partitioning of the objects that can be
associated with a partitioning of properties. Indeed a relevant partition
of objects may exist, whereas it is not the case for properties. In order to
obtain a conceptual clustering of the objects, we work with a bipartite
graph relating objects with formal concepts. Experiments on artificial
benchmarks and real examples show the effectiveness of the method,
more particularly the fact that the results remain stable when an in-
creasing number of properties are shared between objects of different
clusters.
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1 Introduction

For making sense of complex data, one may need to cluster them, and if possible,
to provide labels for the clusters. In this paper we are interested in data that
take the form of a binary relation between a set of objects and a set of properties.
Several families of approaches exist for such a task: one may use bi-clustering
(or two-mode clustering) approaches [3], formal concept analysis (FCA for short)
methods, and hybridization of them.

In previous work, the authors have emphasized the parallelism between FCA
operators and two views of graph clustering, referring respectively to the search
for maximal bi-cliques and to the search of maximal connected components [12].
Moreover, since the number of formal concepts is usually very large, we have
proposed a preliminary approach for providing an approximate conceptual view
of data by taking inspiration from the recent literature on graph clustering (often
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called community detection problem). More precisely, we have proposed a two-
step procedure: i) random walks are used for providing an approximate and
more robust view of the formal context leading to a smaller number of formal
concepts, ii) these concepts are then fused when they have a sufficient overlap
[13]. However, this two-step method requires the tuning of threshold parameters.

In this paper we propose a new approach based on bipartite graphs be-
tween objects and concepts, rather than on bipartite graphs between objects
and properties, as it was the case in the step i) of the previous method. More-
over no threshold are any longer needed. Our goal is now to look for a partition
of the set of objects, while properties may remain shared between different clus-
ters of objects. The paper is organized as follows. After a background on FCA
and its bipartite graph counterpart (Section 2), we present the new approach in
Section 3, and suggest a way of labeling the clusters of objects in Section 3.3.
Experiments are reported in Section 4 that show the effectiveness of the method
on artificial benchmarks and on a real dataset. Comparison with related works
(Section 5) and concluding remarks (Section 6) end the paper.

2 Background: From formal concept analysis to clustering

In this section we first recall the standard notion of FCA, as well as the notion
of independent sub-contexts, and then give their counterpart in the setting of
bipartite graphs where we interpret them in clustering terms.

2.1 Formal concepts and independent subcontexts

Let R be a binary relation between a set O of objects and a set P of Boolean
properties. We note R = (O,P, R) the tuple formed by these objects and prop-
erties sets and the binary relation. It is called a formal context [11]. The notation
(x, y) ∈ R means that object x has property y. Let R(x) = {y ∈ P|(x, y) ∈ R}
be the set of properties of object x. Similarly, R−1(y) = {x ∈ O|(x, y) ∈ R} is
the set of objects having property y.

Formal concept analysis [11] defines two set operators, here denoted (.)∆

and (.)−1∆, called intent and extent operators respectively, s.t. ∀Y ⊆ P and
∀ X ⊆ O :

X∆ = {y ∈ P|∀x ∈ X, (x, y) ∈ R} (1)

Y −1∆ = {x ∈ O|∀y ∈ Y, (x, y) ∈ R} (2)

X∆ is the set of properties possessed by all objects in X. Y −1∆ is the set of
objects having all properties in Y . These two operators induce an antitone Galois
connection between 2O and 2P. This means that the following property holds

X ⊆ Y −1∆ ⇔ Y ⊆ X∆.

A pair such that X∆ = Y and Y −1∆ = X is called a formal concept [11]. X
is its extent and Y its intent. In other words, a formal concept is a pair (X,Y )
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such that X is the set of objects having all properties in Y and Y is the set
of properties shared by all objects in X. It can be shown that formal concepts
correspond to maximal pairs (X,Y ) such that

X × Y ⊆ R.

A recent parallel between formal concept analysis and possibility theory[8]
has led to emphasize the interest of an other remarkable set operator (.)Π , and
their two respective duals. The new operator and the already defined intent
operator can be written as follows, ∀X ⊂ O :

XΠ = {y ∈ P|R−1(y) ∩X 6= ∅} (3)

X∆ = {y ∈ P|R−1(y) ⊇ X} (4)

Note that (4) is equivalent to the definition of operator (.)∆ in (1). XΠ is the
set of properties that are possessed by at least one object in X. X∆ is the set
of properties shared by all objects in X.

Operators (.)−1Π , (.)−1∆ are defined similarly on a set Y of properties by
substituting R−1 to R and by inverting O and P. (Y )−1Π , (Y )−1∆ are respec-
tively, the set of objects having at least one property in Y and the set of objects
that have all the properties in Y .

This new operator lead to consider a new connection[9] that corresponds to
pairs (X,Y ) such that XΠ = Y and Y −1Π = X (while (.)∆ leads to formal
concepts, as already said). Pairs (X,Y ) such that XΠ = Y and Y −1Π = X
do not define formal concept, but independent sub-contexts. Indeed, it has been
recently shown[9] that pairs (X,Y ) of sets exchanged through the new connection
operator, are subsets such that

(X × Y ) ∪ (X × Y ) ⊇ R,

just as formal concepts correspond to maximal pairs (X,Y ) such that

X × Y ⊆ R.

In Figure 1, two examples of formal concepts are the pairs ({a1, a2, a3, a4, b1},
{2, 7}) and ({c1, c2}, {4, 5, 6, 8}). On the other hand, if we forget the fact that the
object a2 verify the property 10, the pairs ({a1, a2, a3, a4, b1, b2, b3, b4, c1, c2},
{1, 2, 3, 4, 5, 6, 7, 8}) and ({d1, d2}, {9, 10, 11}) are two independent sub-contexts.

Thus, in the setting of formal concept analysis, by means of two companion
connections, two key aspects of the idea of clustering are at work. On the one
hand, independent sub-contexts are characterized, and on the other hand inside
each sub-context, formal concepts (X,Y ) are identified where each pair (x, y)
such that x ∈ X, y ∈ Y are in relation (while no pair (x, y) such that x ∈
X ′, y ∈ Y ′ or x ∈ X ′, y ∈ Y ′ are in relation if (X ′, Y ′) and (X ′, Y ′) are two
independent subcontexts). In particular, two formal concepts belonging to two
different sub-contexts are clearly well-separated. The relation with clustering is
made still clearer in the next sub-section by providing a bipartite graph reading
of FCA.
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1 2 3 4 5 6 7 8 9 10 11

a1 × × × × ×
a2 × × × × ×
a3 × × × ×
a4 × × × ×
b1 × × × × ×
b2 × × ×
b3 × × ×
b4 × × × ×
c1 × × × ×
c2 × × × × ×
d1 × × ×
d2 × ×
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Fig. 1. A formal context R and the corresponding bipartite graph.

2.2 Formal concept analysis, bipartite graphs and clustering

For every formal context R = (O,P, R), one can build an undirected bi-graph
G = (Vo, Vp, E) s.t. there is a direct correspondence between: the set of ob-
jects O and a set Vo of “o-vertices”, the set of properties P and a set Vp of
“p-vertices”, and between the binary relation R and a set of edges E. In other
words, there is one o-vertex for each object, one p-vertex for each property, and
one edge between an o-vertex and a p-vertex if and only if the corresponding
object possesses the corresponding property (according to R).

The operators (.)Π and (.)∆ can then be rewritten in the following way:

XΠ = ∪x∈XΓ (x) (5)

X∆ = ∩x∈XΓ (x) (6)

where Γ (x) denotes the set of neighbors of the vertex x. These notations are
interesting since only the neighborhood of vertices of X is involved. It permits
to immediately understand operators (.)Π and (.)∆ in terms of neighborhood
in the bi-graph: XΠ is the union of neighbors of vertices of X whereas X∆ is
the intersection of these neighbors. The same expressions apply to (.)−1Π and
(.)−1∆, changing X by Y (and x by y).

The connections induced by (.)∆ and (.)Π can also be understood in the
graph setting framework: the first connection corresponds to maximal bi-cliques
whereas the second one two maximal connected components [12]. Indeed on the
bi-graph G = (Vo, Vp, E), with X ⊆ Vo and Y ⊆ Vp, we have:

Proposition 1 X = Y −1∆ and Y = X∆, iff X ∪ Y is a maximal bi-clique.

Proposition 2 For a pair (X,Y ) the two following propositions are equivalent:

1. X = Y −1Π and Y = XΠ and there is no strict subset X ′ ⊂ X and Y ′ ⊂ Y
such that X ′ = Y ′−1Π , Y ′ = X ′Π .

2. X ∪ Y is a maximal connected component (which counts at least 2 vertices).
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It is worth noticing that the two connections correspond to extreme defini-
tions of what a cluster (or a community) could be:

1. a group of vertices with no link missing inside.
2. a group of vertices with no link with outside.

One the one hand a maximal bi-clique is a maximal subset of vertices with a
maximal edge density. Vertices cannot be moved closer, and in that sense one can
not build a stronger cluster. On the other hand, a set of vertices disconnected
from the rest of the graph can not be more clearly separated from other vertices.
It corresponds to another type of cluster. In fact, only the smallest of such
sets are really interesting, and they are nothing else than maximal connected
components. These two extreme definitions were already pointed out for clusters
in unipartite graphs [19].

3 Looking for meaningful clusters of objects

In this section we motivate the need for a new clustering procedure which enables
us to obtain meaningful clusters of objects, even if the objects in different clusters
share many properties.

3.1 Preliminary discussion

As said in the introduction, our primary purpose is to cluster the set of consid-
ered objects into distinct subsets on the basis of their properties. However the
application of a graph clustering method on the bipartite graph (associated to
the formal context) generally fails. It is due to the fact that the method when
tentatively gathering objects in separate clusters, often fails to do it since ob-
jects in different potential clusters usually share many common properties. In
other words, bipartite graph clustering looks for a partition of the graph vertices.
When applied to the object-properties graph it puts into correspondence subsets
of objects with subsets of properties, i.e. they look for a partition of objects and
a partition of properties such that each set of objects is in correspondence with
a set of properties. This is illustrated on the Figure 2(a) for the formal context
example of Figure 1. As can be seen, the method isolates the cluster {d1, d2},
but fails to discriminate more, leaving the rest of the objects in the same clus-
ter. Indeed, it will have been desirable to separate these remaining objects in
3 clusters, namely {a1, a2, a3, a4}, {b1, b2, b3, b4} and {c1, c2}, as revealed by a
careful examination of the formal context of Figure 1.

Besides, it can be checked that there are 30 formal concepts in the formal
context of Figure 1. Note that it is usually observed that FCA returns a rather
large number of formal concepts, in particular with noisy data or when ex-
ceptions are present. Moreover there is no immediate way of using the lattice
of concepts for building a partition of the objects. However, as can been seen
in Figure 1 the 3 subsets of objects that the method have failed to separate
(Figure 2(a)) form the “approximate” concepts ({a1, a2, a3, a4}, {1, 2, 3, 7, 8}),
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(a) objects-properties graph, (b) objects-concepts graph

Fig. 2. For the relation given in Figure 1, results of Infomap [18] graph clustering
method either on the basic objects-properties graph (a) or on the objects-concepts
graph (b). On the two graphs circles are objects, for (a) squares are properties and for
(b) triangles are concepts.

({b1, b2, b3, b4}, {2, 3, 4, 5}) and ({c1, c2}, {4, 5, 6, 7, 8}). By approximate concepts
[9], we mean that, up to a few missing crosses, we have large formal concepts
(X,Y ) (i.e., they correspond in Figure 1 to “approximate” X × Y rectangles).
This suggests to investigate a “conceptual” clustering of the objects by dealing
with the objects-formal concepts bipartite graph.

3.2 Clustering objects-concepts bipartite graphs

We now describe the method we propose more precisely. First, a preliminary step
consists in building all the formal concepts associated to the objects-properties
graph, using a formal concept extraction method, e.g. [10].

Second, a bipartite graph between objects and concepts is built such that each
object o ∈ O is connected to a concept (X,Y ) iff o ∈ X, then the corresponding
edge is weighted by w = |Y | the number of properties of the corresponding
concept. This weighting is introduced in order to favor “large” concepts, which
are expected to be more “meaningful”. Indeed concepts with a small number
of properties are likely to connect “too many” objects. Note that the top and
bottom concepts are ignored, if they contain zero objects or zero properties.

The vertices of this bipartite graph are then partitioned by using the graph
clustering Infomap method [18]. Infomap is recognized as one of the best methods
of graph clustering [16]. It consists in searching for the clusters that best compress
the description length of the trajectory of a random walk through the whole
graph. This trajectory is described in a two-level way in function of the clusters:
when the walker enters a cluster, the name of the cluster is used, but then only the
name of the current vertex inside the cluster is retained. In this way, short length
names may be used for naming different vertices that are in different clusters
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leading to shorter trajectory descriptions, at the condition that clusters are such
that random walkers tend to stay inside clusters. This intuitively fits the idea that
random walkers are “trapped” when entering a cluster, since a cluster can only
be weakly related to other clusters. This idea has been used in different manners
in the recent graph clustering (or community detection) literature [19, 6]. Note
that Infomap has not been specifically designed for bipartite graphs. However,
nothing in the underlying mathematics is specific to uni-partite graphs either,
and prevents to use it for bipartite graphs. Infomap does not specifically take into
account the fact that the graph is bipartite. In fact, this is an advantage because
we are looking for something which is a kind independent sub-contexts in the
formal context defined by the relation linking objects and formal concepts. Thus,
we obtain both a partition of objects and an associated partition of (formal)
concepts.

As can be seen in Figure 2(b), the application of Infomap on the objects-
concepts graph now yields the 4 expected clusters of objects, in the example of
Figure 1.

3.3 Labeling clusters

In order to label each cluster of objects with a subset of relevant properties, we
use the following simple method.

For each cluster of objects we look for two particular concepts: namely the
concept (X∗, Y ∗) which is associated with the largest subset of objects (of the
corresponding objects cluster) and the concept (X∗, Y∗) which is associated with
the smallest superset of objects. In formal terms, let C = (X,S) be a cluster of
objects X with the associated set S of concepts, i.e. S = {(X ′1, Y ′1), (X ′2, Y

′
2), ...}.

Let be T the set of all formal concepts. Then we compute the two noticeable
formal concepts that are defined as follows:

(X∗, Y ∗) ∈ T s.t.

{
X∗ ⊇ X
@(Xj , Yj) ∈ T s.t. X∗ ⊃ Xj ⊇ X (7)

(X∗, Y∗) ∈ T s.t.

{
X∗ ⊆ X
@(Xj , Yj) ∈ T s.t. X∗ ⊂ Xj ⊆ X (8)

One can check that X∗ ⊆ X∗, and Y∗ ⊇ Y ∗. Therefore the two sets of
properties Y ∗ and Y∗ can be used for labeling the cluster. Note that we are sure
that all the properties of Y ∗ are shared by all the objects of the cluster.

4 Experiments and discussions

For evaluating (and illustrating) the proposed procedure we consider two kinds
of benchmark, one generated artificially and a real example available in the
literature.



8 SUM12 submission version

4.1 Evaluation on artificial benchmarks

In order to build a benchmark for object clustering procedure, we built formal
contexts in the following way. We take n groups of k objects, each group is
associated with mown properties that only objects of this group may satisfy, and
with mshared properties that may be verified by objects of s other groups. For
each group of objects, an object of the group satisfies each property in the group
with a probability µ. An example of such a context is given in Table 1.

Table 1. An example of formal context artificially generated by the procedure de-
scribed in Section 4.1, with n = 3, k = 3, mown = 2, mshared = 4, s = 1, µ = 0.8.

A0 A1 B0 B1 C0 C1 AB0 AB1 BC0 BC1 CA0 CA1

a0 × × × × ×
a1 × × × ×
a2 × × × × ×
b0 × × × ×
b1 × × × × × ×
b2 × × × ×
c0 × × × × ×
c1 × × × × × ×
c2 × × × ×

The Figures 3(a) and 3(b) present the results of the clustering on the objects-
properties graph (the curve O ↔ P, in blue) and on the objects-concepts graph
(the curve O↔ C, in red). To evaluate the accuracy of our algorithm against the
correct partition of objects we use the normalised mutual information (NMI).
A value of 0 indicate that the two partitions are totally dissimilar, whereas a
value of 1 indicate that the two partitions are identical. This is a commonly
use measure in graph clustering literature [5]. Each point indicated the average
value obtained on 50 realizations, the standard deviation is indicated by the
vertical error bar on each point. As shown in Figure 3(a), the results remain
stable with our approach when an increasing number of properties are shared
between objects in different clusters, while it is not the case if we work with the
objects-properties graph only.

4.2 The UCI Zoo dataset

The UCI Zoo dataset describes 101 animals on 16 Boolean-valued attributes and
one numerical attribute (the number of legs). We transformed this numerical
attribute in 7 Boolean attributes (no legs, one leg, two legs, ...). For each animal
the type is indicated, there are 7 types of animals: mammal, bird, reptile, fishes,
amphibians, insects, invertebrates. This data set can be downloaded from the
UCI Machine Learning Repository1.

1 http://archive.ics.uci.edu/ml/datasets/Zoo
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Fig. 3. Normalised Mutual Information (NMI) [5] value of Infomap clustering method
on objects-properties graph (curve O ↔ P in blue) and on objects-concepts graph
(curve O ↔ C in red). Benchmark contexts are built with the following parameters:
n = 5, k = 10, mshared = 6, s = 2

Table 4.2 shows the result of the clustering over the objects-properties graph,
while Table 4.2 shows the results on the objects-concepts graph. One can see that
the clustering method fails on the objects-properties graph, whereas the partition
given on the objects-concepts graph retrieves the types of animals almost exactly.
Moreover, the labels Y ∗ and Y∗ coincide in several cases.

5 Related works

We focus our discussion on the literature either related to bipartite graph cluster-
ing or to clustering of objects according to a binary relation between objects and
properties. The first group makes explicit reference to the graph representation
whereas the second one doesn’t.

Let us start with representatives of the vast amount of literature in the sec-
ond group. In [14], the authors use a measure of quality for clustering objects
based on Kullback-Leibler entropy which is optimized by means of a genetic
algorithm. However, such a black box method does not provide a means for la-
beling the clusters. In [1] A FCA-based method is proposed, where potentially
interesting concepts are selected and then the underlying formal context is re-
vised. It enables the extraction of new descriptors which allows for the reuse of
concepts in an incremental way. This leads to a method taking inspiration from
inverse resolution in inductive logic programming which enables the extraction of
clusters with associated properties, in the Zoo dataset example. Note that there
exist a lot of methods that look for bi-clustering (also named co-clustering, or
two-mode clustering) which consist in finding a partition of objects that is in
direct correspondence with a partition of properties, see [3] for a state of the art.



10 SUM12 submission version

Table 2. Results of the clustering of the objects-concepts graph (NMI = 0.81)

Y ∗ = {backbone, breathes, hair,milk, toothed}
Y∗ = {backbone, breathes, hair,milk, tail, toothed}

Mammals: aardvark, lynx, leopard, bear, boar, puma, lion, cheetah, raccoon,
mink, pussycat, mongoose, wolf, polecat, antelope, calf, elephant,
oryx, goat, deer, reindeer, buffalo, pony, giraffe, vole, mole, hare,
cavy, hamster, opossum, sealion, girl, wallaby, gorilla, fruitbat, squir-
rel, vampire

Y ∗ = {0legs}
Y∗ = {0legs, aquatic, eggs}

Fishes: stingray, pike, piranha, catfish, herring, dogfish, tuna, chub, bass, sole,
seahorse, carp, haddock

Invertebrates: clam, seawasp
Reptiles: seasnake

Y ∗ = {2legs, backbone, breathes, eggs, feathers, tail}
Y∗ = {2legs, backbone, breathes, eggs, feathers, predator, tail}

Birds: flamingo, gull, skimmer, sparrow, wren, skua, hawk, crow, duck, vul-
ture, lark, swan, pheasant, kiwi, rhea, ostrich, penguin

Y ∗ = Y∗ = {4legs, eggs}
Amphibians: newt, frog2, frog1, toad

Reptiles: tortoise, tuatara
Mammals: platypus

Invertebrates: crab

Y ∗ = Y∗ = {0legs, aquatic, backbone, breathes, catsize, fins,milk,
predator, toothed}

Mammals: porpoise, dolphin, seal

Y ∗ = Y∗ = {6legs, breathes, eggs}
Insects: flea, ladybird, moth, gnat, wasp, honeybee, housefly, termite

Y ∗ = Y∗ = {0legs, breathes, eggs}
Reptiles: slowworm, pitviper

Invertebrates: worm, slug

Y ∗ = Y∗ = {2legs, airborne, backbone, breathes, domestic, eggs, feathers, tail}
Birds: chicken, parakeet, dove

Y ∗ = {aquatic, eggs, predator}
Y∗ = {6legs, aquatic, eggs, predator}

Invertebrates: crayfish, starfish, lobster

Y ∗ = Y∗ = {8legs, breathes, predator, tail, venomous}
Invertebrates: scorpion

Y ∗ = Y∗ = {8legs, aquatic, catsize, eggs, predator}
Invertebrates: octopus
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Table 3. Results of the clustering of the objects-properties graph (NMI = 0.02)

Mammals: aardvark, antelope, bear, boar, buffalo, calf, cavy, cheetah, deer, dol-
phin, elephant, fruitbat, giraffe, girl, goat, gorilla, hamster, hare, leop-
ard, lion, lynx, mink, mole, mongoose, opossum, oryx, platypus, pole-
cat, pony, porpoise, puma, pussycat, raccoon, reindeer, seal, sealion,
squirrel, vampire, vole, wallaby, wolf

Birds: chicken, crow, dove, duck, flamingo, gull, hawk, kiwi, lark, ostrich,
parakeet, penguin, pheasant, rhea, skimmer, skua, sparrow, swan, vul-
ture, wren

Fishes: bass, carp, catfish, chub, dogfish, haddock, herring, pike, piranha,
seahorse, sole, stingray, tuna

Invertebrates: clam, crab, crayfish, lobster, octopus, scorpion, seawasp, slug, worm
Insects: flea, gnat, honeybee, housefly, ladybird, moth, termite, wasp

Reptiles: pitviper, seasnake, slowworm, tortoise, tuatara
Amphibians: frog1, frog2, newt, toad

Invertebrates: starfish

Another family of methods came from the literature concerning bipartite
graph clustering. In [7] a spectral method is used for finding a partition of a
bipartite graph that minimized the cut size, i.e. the number of edges running
between clusters. The main drawback of such approaches is that the number of
clusters has to be known in advance, and the methods tend to create clusters
having almost the same size, which rarely makes sense with real data sets.

In [2], the authors proposed an adaptation of Newman modularity [4] to
the case of bipartite graph. The Newman modularity is a measure of quality
of a partition of a graph vertices, a relevant partitioning is usually found by
optimizing this quality measure using various heuristics.

Most of these methods lead to a partition of objects and properties, and
therefore do not manage to partition objects when properties are shared be-
tween many clusters. Note that this issue has been partially addressed in [17],
where the authors proposed a measure of quality (inspired from the Newman
modularity) of a bipartite graph clustering that allows the fact that there is no
direct correspondence between properties cluster and object clusters.

Finally, note that in [15] the authors propose an approach that consists in
partitioning a bipartite graph between objects and hypercliques (which can be
understood as a set of properties that are satisfied by almost the same objects).
This method is in a spirit similar to the method we proposed. However they use
a partitioning method that amounts to minimizing a cut measure, which suffers
from the main drawbacks as the one used in [7].

6 Conclusion

Starting with a binary relation linking objects and properties, formal concept
analysis enables us to obtain formal concepts on the one hand, but also indepen-
dent sub-contexts on the other hand, as recalled at the beginning of this paper.
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Then, the independent sub-contexts may be viewed as separating clusters of ob-
jects and properties, inside which formal concepts identify homogeneous families
of objects. But due to noisy data, due to the existence of exceptions, and more
generally due to the fact that the same property may be shared by a variety of
objects, it is difficult to cluster a set of objects in a meaningful way directly on a
formal context. In the paper, we have proposed to handle the problem in a new
formal context where the properties are replaced the formal concept obtained
from the initial formal context. Then we have shown on artificial benchmarks
and on a real data set that looking for clusters in this higher level formal context
makes possible to obtain clusters that can then be interpreted in terms of two
nested sets of properties where the smallest one contains only properties that
are shared by all the objects in the cluster. As can be seen on the real data set,
the two nested sets of properties may be equal, and then a perfect characteriza-
tion of the cluster is obtained. More experiments would be necessary to evaluate
possible variants of this general approach.
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