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Abstract

Edges of graphs that model real data can be
seen as judgements whether pairs of objects
are in relation with each other or not. So,
one can evaluate the similarity of two graphs
with a measure of agreement between judges
classifying pairs of vertices into two cate-
gories (connected or not connected). When
applied to synonymy networks, such measures
demonstrate a surprisingly low agreement be-
tween various resources of the same language.
This seems to suggest that the judgements
on synonymy of lexemes of the same lexi-
con radically differ from one dictionary ed-
itor to another. In fact, even a strong dis-
agreement between edges does not necessarily
mean that graphs model a completely differ-
ent reality: although their edges seem to dis-
agree, synonymy resources may, at a coarser
grain level, outline similar semantics. To in-
vestigate this hypothesis, we relied on shared
common properties of real world data net-
works to look at the graphs at a more global
level by using random walks. They enabled
us to reveal a much better agreement between
dense zones than between edges of synonymy
graphs. These results suggest that although
synonymy resources may disagree at the level
of judgements on single pairs of words, they
may nevertheless convey an essentially simi-
lar semantic information.

1 Introduction

More and more resources exist, built with various
approaches and methods and with many different
aims and intended uses. A new issue raised by this

growth is that of comparing various resources. A
lexical resource is usually based on semantic judge-
ments about lexical elements (a human judgement
performed by a lexicographer, or a machine-based
judgement in the case of automatically built re-
sources). Often, two independently built resources
that describe the same linguistic reality only show a
weak agreement even when based on human judge-
ments under the same protocol (Murray and Green,
2004).

Many of such resources, such as WordNet (Fell-
baum, 1998) or Wiktionary1 (Zesch et al., 2008;
Sajous et al., 2010) can be modelled as graphs. A
graph encodes a binary relation on a set V of ver-
tices. A graph G = (V,E) is therefore defined by
a finite, non empty set of n = |V | vertices and by
a set E ⊆ V × V of m = |E| couples of vertices
(edges). In the linguistic field, vertices can be vari-
ous elements of the lexicon: lemmas, word senses,
syntactic frames... and edges can describe various
relations: synonymy, hyperonymy, translation, co-
occurrence... Edges between two vertices can be
seen as judgements that decide whether the consid-
ered relation applies to this pair. For example, in a
synonymy graph, an edge exists between two words
if they were judged to be synonyms by the lexicogra-
pher who was compiling the dictionary. So, different
graphs that model dictionaries of synonyms are built
according to the judgements of various “judges”.

We first illustrate, in section 2, how various stan-
dard synonymy resources of English and French
share common structural properties: they all are Hi-
erarchical Small Worlds (HSW). However, we then

1http://www.wiktionary.org/



show that the synonymy judgements they describe
seem to disagree: the Kappa (Cohen, 1960) between
the edges of any two such resources remains surpris-
ingly low. In the third section, we analyse this appar-
ent disagreement and in section 4, we address it by
proposing an alternative view of the networks, based
on random walks. This more global view enables us
to assess if disagreeing synonymy networks never-
theless concord at a more global level, because they
model the same linguistic reality. Beyond the usual
Kappa agreement measure, which is based on the lo-
cal comparison of two category judgements (a pair is
or is not a pair of synonyms), we can show that syn-
onymy judgements do not essentially diverge on the
lexical semantic structure that emerges from them.
In the fifth section, we conclude by outlining possi-
ble applications and perspectives of this work.

2 Graph modelling of various synonymy
resources

In order to study the similarities and variations of
lexical resources, let us study a sample of graphs that
model several standard synonymy resources. We
analyse five standard, general purpose, paper dictio-
naries of French synonyms2: Bailly (Bai), Benac
(Ben), Bertaud du Chazaut (Ber), Larousse (Lar),
Robert (Rob). We also study synonymy relations ex-
tracted from the Princeton Word Net (PWN ) and
from the English Wiktionary (Wik). The PWN
synonymy network was built according to the fol-
lowing rule: an edge is drawn between any two
words that belong to the same synset. The Wik-
tionary synonymy network was extracted from Wik-
tionary dumps3 by methods exposed in (Sajous et
al., 2010). Each of these resources is split4 by parts
of speech (Nouns, Verbs, Adjectives) resulting in
three different synonymy graphs, designated, for ex-
ample for the Robert dictionary, as follows: RobN ,
RobV , RobA.

2Synonymy relations from each of these dictionaries were
extracted by the INALF/ATILF Research Unit and corrected by
the CRISCO Research Unit.

3http://redac.univ-tlse2.fr/lexiques/wiktionaryx.html
4Note that splitting is not necessary. The following work

would apply similarly to whole resources.

2.1 Invariants : similar structural properties
Most lexical networks, as most field networks5,
are Hierarchical Small World (HSW) Networks that
share similar properties (Watts and Strogatz, 1998;
Albert and Barabasi, 2002; Newman, 2003; Gaume
et al., 2010; Steyvers and Tenenbaum, 2005). They
exhibit a low density (not many edges), short paths
(the average number of edges L on the shortest
path between two vertices is low), a high clustering
rate C (locally densely connected subgraphs can be
found whereas the whole graph is globally sparse in
edges), and the distribution of their degrees follows
a power law. All graphs in our sample exhibit the
HSW properties. For example, Table 1 shows the
pedigrees of synonymy graphs of verbs(for space
reasons we only show results for verbs, results are
similar for the two other parts of speech). In this ta-
ble, n and m are the number of vertices and edges,
〈k〉 is the average degree of vertices, and λ is the
coefficient of the power law that fits the distribution
of degrees, with a correlation coefficient r2. nlcc
and Llcc are the number of vertices and the aver-
age path length measured on the largest connected
component. Even if n and 〈k〉 vary across dictionar-
ies, Llcc is always small, C is always higher than for
equivalent random graphs (Newman, 2003) and the
distribution of degrees remains close to a power law
with a good correlation coefficient.

Table 1: Pedigrees of seven synonymy graphs (verbs).
n m 〈k〉 nlcc mlcc C Llcc λ r2

BaiV 3082 3648 2.46 2774 3417 0.04 8.24 -2.33 0.94
BenV 3549 4680 2.73 3318 4528 0.03 6.52 -2.10 0.96
BerV 6561 25177 7.71 6524 25149 0.13 4.52 -1.88 0.93
LarV 5377 22042 8.44 5193 21926 0.17 4.61 -1.94 0.88
RobV 7357 26567 7.48 7056 26401 0.12 4.59 -2.01 0.93
PWNV 11529 23019 6.3 6534 20806 0.47 5.9 -2.4 0.90
WikV 7339 8353 2.8 4285 6093 0.11 8.9 -2.4 0.94

2.2 Variability : a low agreement between
edges

Although all these graphs are HSW, Table 1 shows
that the lexical coverage (n) and the number of syn-
onymy links (m) significantly vary across graphs.
Given two graphs G1 = (V1, E1) and G2 =

5Field networks are networks that model real data gathered
by field work, for example in sociology, linguistics or biol-
ogy. They contrast with artificial networks (deterministic or
random).



(V2, E2), in order to compare their lexical cover-
ages, we compute the Recall (R•), Precision (P•)
and F-score (F•) of their vertex sets:

R•(G1, G2) = |V1∩V2|
|V2| P•(G1, G2) = |V1∩V2|

|V1|

F•(G1, G2) = 2. R•(G1,G2).P•(G1,G2)
R•(G1,G2)+P•(G1,G2)

F-scores of pairs of comparable graphs (same lan-
guage and same part of speech) of our sample re-
main moderate. Table 2 illustrates these measures on
the eleven pairs of graphs involving the five French
synonymy graphs (verbs) and the two English ones.
It shows that the lexical coverages of the various
synonymy graphs do not perfectly overlap.

Table 2: Precision, Recall and F-score of vertex sets of
eleven pairs of graphs. G1 in rows, G2 in cols.

BenV BerV LarV RobV WikV

BaiV

R• 0.66 0.45 0.51 0.40
P• 0.76 0.96 0.90 0.95
F• 0.71 0.61 0.65 0.56

BenV

R• 0.52 0.58 0.45
P• 0.96 0.88 0.93
F• 0.68 0.70 0.60

BerV

R• 0.85 0.73
P• 0.70 0.82
F• 0.77 0.77

LarV

R• 0.68
P• 0.92
F• 0.78

PWNV

R• 0.49
P• 0.31
F• 0.38

The value of F•(G1, G2) measures the relative
lexical coverage of G1 and G2 but does not eval-
uate the agreement between the synonymy judge-
ments modelled by the graphs’ edges. The Kappa
of Cohen (Cohen, 1960) is a common measure of
agreement between different judges who categorize
the same set of objects. In the case of graphs, the
judgements are not applied to simple entities but to
relations between pairs of entities. Two synonymy
graphs G1 = (V1, E1) and G2 = (V2, E2) give two
judgements on pairs of vertices. For example, if a
pair (u, v) ∈ V1 × V1 is judged as synonymous then
(u, v) ∈ E1, else (u, v) ∈ E1. To measure the
agreement between edges of G1 and G2, one first
has to reduce the two graphs to their common ver-
tices:

• G′1 =
(
V ′ = (V1∩V2), E′1 = E1∩ (V ′×V ′)

)
;

• G′2 =
(
V ′ = (V1∩V2), E′2 = E2∩ (V ′×V ′)

)
;

For each pair of vertices (a, b) ∈ (V ′ × V ′), four
cases are possible:

• (a, b) ∈ E′1
⋂
E′2: agreement on pair (a, b),

(a, b) is synonymous for G′1 and for G′2;

• (a, b) ∈ E′1
⋂
E′2: agreement on pair (a, b),

(a, b) is neither synonymous forG′1 nor forG′2;

• (a, b) ∈ E′1
⋂
E′2: disagreement on pair (a, b),

(a, b) is synonymous for G′1 but not for G′2;

• (a, b) ∈ E′1
⋂
E′2: disagreement on pair (a, b),

(a, b) is synonymous for G′2 but not for G′1;

The agreement between the two synonymy judge-
ments ofG1 andG2 is measured byKl(G′1, G

′
2), the

Kappa between the two sets of edges E′1 and E′2:

Kl(G
′
1, G

′
2) =

(p0 − pe)
(1− pe)

(1)

where:

p0 =
1

ω
.(|E′1 ∩ E′2|+ |E′1 ∩ E′2|) (2)

is the relative observed agreement between vertex
pairs of G′1 and vertex pairs of G′2, where ω is the
number of possible edges6 ω = 1

2 .|V
′|.(|V ′| − 1).

pe =
1

ω2
.(|E′1|.|E′2|+ |E′1|.|E′2|) (3)

is the hypothetical probability of chance agreement,
assuming that judgements are independent7.

The value of agreement on synonymy judgements
Kl(G

′
1, G

′
2) varies significantly across comparable

dictionary pairs of our sample, however it remains
quite low. For example: Kl(Rob′V , Lar

′
V ) = 0.518

and Kl(PWN ′V ,Wik′V ) = 0.247 (cf. Table 3). On
the whole sample studied in this work this agreement
value ranges from 0.25 to 0.63 averaging to 0.39.
This shows that, although standard dictionaries of
synonyms show similar structural properties, they
considerably disagree on which pairs of words are
synonymous.

6Here, we do not consider reflexivity edges, that link ver-
tices to themselves, as they are obviously in agreement across
graphs and are not informative synonymy judgements.

7Note that Kl(G′1, G′2) = Kl(G
′
2, G

′
1).



3 Analysis of the disagreement between
synonymy networks

When comparing two lexical resources built by lexi-
cographers, one can be surprised to find such a level
of disagreement on synonymy relations. This diver-
gence in judgements can be explained by editorial
policies and choices (regarding, for example printed
size constraints, targeted audiences...). Furthermore,
lexicographers also have their subjectivity. Since
synonymy is more a continuous gradient than a dis-
crete choice (Edmonds and Hirst, 2002), an alterna-
tive limited to synonym/not synonym leaves ample
room for subjective interpretation. However, these
justifications do not account for such discrepancies
between resources describing the semantic relations
of words of the same language. Therefore, we ex-
pect that, if two words are deemed not synonyms
in one resource G1, but synonyms in another G2,
they will nevertheless share many neighbours in G1

and G2. In other words they will belong to the same
dense zones. Consequently the dense zones (or clus-
ters) found in G1 will be similar to those found in
G2. Random walks are an efficient way to reveal
these dense zones (Gaume et al., 2010). So, to eval-
uate the hypothesis, let us begin by studying the sim-
ilarity of random walks on various synonymy net-
works.

3.1 Random walks on synonymy networks
If G = (V,E) is a reflexive and undirected graph,
let us define dG(u) = |{v ∈ V/(u, v) ∈ E}| the
degree of vertex u in graph G, and let us imagine a
walker wandering on the graph G:

• At a time t ∈ N, the walker is on one vertex
u ∈ V ;

• At time t + 1, the walker can reach any neigh-
bouring vertex of u, with uniform probability.

This process is called a simple random walk (Bol-
lobas, 2002). It can be defined by a Markov chain
on V with a n× n transition matrix [G]:

[G] = (gu,v)u,v∈V

with gu,v =


1

dG(u)
if (u, v) ∈ E,

0 else.

Since G is reflexive, each vertex has at least one
neighbour (itself) thus [G] is well defined. Further-
more, by construction, [G] is a stochastic matrix:
∀u ∈ V,

∑
v∈V gu,v = 1.

The probability P tG(u v) of a walker starting on
vertex u to reach a vertex v after t steps is:

P tG(u v) = ([G]t)u,v (4)

One can then prove (Gaume, 2004), with the
Perron-Frobenius theorem (Stewart, 1994), that if G
is connected8 (i.e. there is always at least one path
between any two vertices), reflexive and undirected,
then ∀u, v ∈ V :

lim
t→∞

P t
G(u v) = lim

t→∞
([G]t)u,v =

dG(v)∑
x∈V dG(x)

(5)
It means that when t tends to infinity, the probability
of being on a vertex v at time t does not depend on
the starting vertex but only on the degree of v. In the
following we will refer to this limit as πG(v).

3.2 Confluence in synonymy networks
The dynamics of the convergence of random walks
towards the limit (Eq. (5)) is heavily dependent on
the starting node. Indeed, the trajectory of the ran-
dom walker is completely governed by the topology
of the graph: after t steps, any vertex v located at a
distance of t links or less can be reached. The prob-
ability of this event depends on the number of paths
between u and v, and on the structure of the graph
around the intermediary vertices along those paths.
The more interconnections between the vertices, the
higher the probability of reaching v from u.

For example, if we take G1 = RobV and
G2 = LarV , and choose the three vertices
u = éplucher (peel), r = dépecer (tear apart) and
s = sonner (ring), which are such that:

• u= éplucher (peel) and r= dépecer (tear apart)
are synonymous in RobV : (u, r) ∈ E1;

• u= éplucher (peel) and r= dépecer (tear apart)
are not synonymous in LarV : (u, r) /∈ E2;

• r= dépecer (tear apart) and s= sonner (ring)
have the same number of synonyms in G1 :
dG1(r) = dG1(s) = d1;

8The graph needs to be connected for Eq. 5 to be valid but,
in practice, the work presented here also holds on disconnected
graphs.



• r= dépecer (tear apart) and s= sonner (ring)
have the same number of synonyms in G2 :
dG2(r) = dG2(s) = d2.

Then Equation (5) states that (P tG1
(u r))1≤t and

(P tG1
(u s))1≤t converge to the same limit:

πG1(r) = πG1(s) =
d1∑

x∈V1
dG1(x)

as do (P tG2
(u r))1≤t and (P tG2

(u s))1≤t:

πG2
(r) = πG2

(s) =
d2∑

x∈V2
dG2

(x)

However the two series do not converge with the
same dynamics. At the beginning of the walk, for t
small, one can expect that P tG1

(u r) > P tG1
(u s)

and P tG2
(u r) > P tG2

(u s) because éplucher is
semantically closer to dépecer than to sonner. In-
deed the number of short paths between éplucher
and dépecer is much greater than between éplucher
and sonner.

Figure 1(a) shows the values of P tG1
(u r)

and P tG1
(u s) versus t, and compares them

to their common limit. Figure 1(b) shows
the values of P tG2

(u r) and P tG2
(u s) ver-

sus t, and compares them to their common limit.
These figures confirm our intuition that, since
éplucher (peel) and dépecer (tear apart) are seman-
tically close, P tG1

(u r) and P tG2
(u r) decrease to

their limit. We call this phenomenon strong con-
fluence. It is worth noting that this remains true
even if éplucher (peel) and dépecer (tear apart)
are not synonyms in LarV . Conversely, since
éplucher (peel) and sonner (ring) are semantically
distant, P tG1

(u s) and P tG2
(u s) increase to their

asymptotic value. We call this phenomenon weak
confluence.

3.3 Correlation of the confluence of
disagreeing synonymy pairs

When two graphs G1 and G2 disagree on a pair of
vertices (a, b) (a is a neighbour of b in one graph but
not in the other) there are three possible cases for the
strength of the confluence between vertices a and b:

(1) strong in both graphs (confluence agreement),
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(b) G2 = LarV

Figure 1: Confluences between éplucher (peel),
dépecer (tear apart) and éplucher (peel), sonner (ring)
in RobV and LarV .

(2) weak in both graphs (confluence agreement),

(3) strong in one graph, but weak in the other (con-
fluence disagreement).

To contrast cases (1) and (2) from case (3) we
measure the correlation between the confluences of
disagreeing pairs of two synonymy networks G′1
and G′2. We compare it to this same correlation on
two reflexive and undirected random graphs RG′1 =

(V ′, ER1 ) and RG′2 = (V ′, ER2 ) built such that:

|ER1 ∩ ER2 | = |E′1 ∩ E′2|,

|ER1 ∩ ER2 | = |E
′
1 ∩ E′2|,

|ER1 ∩ E
R
2 | = |E′1 ∩ E

′
2|,



which means that the Kappa agreement between
RG′1 and RG′2 is the same as between G′1 and G′2.

For a given t > 1 and a set of vertex pairs X ⊆
V ′×V ′, the correlation of confluences ΓX(G′1, G

′
2)

is defined by the Pearson’s linear correlation coef-
ficient of the two value tables

(
P tG′1

(u v)
)
(u,v)∈X

and
(
P tG′2

(u v)
)
(u,v)∈X .

For all comparable pairs of our sample, we
see that disagreeing pairs tend to have a much
higher correlation of confluence than disagreeing
pairs of equivalent random networks. As an ex-
ample, for G1 = RobV , G2 = LarV and
t = 3, we have Γ

E′1
⋂
E′2

(G′1, G
′
2) = 0.41 and

Γ
E′1
⋂
E′2

(G′1, G
′
2) = 0.38, whereas in the case of

the equivalent random graphs the same figures are
close to zero.

This suggests that even if graphs disagree on the
synonymy of a significant number of pairs, they nev-
ertheless generally agree on the strength of their
confluence. In other words, occurrences of cases (1)
and (2) are the majority whereas occurrences of case
(3) are rare. We propose in the next section an exper-
iment to verify if we can rely on confluence to find a
greater agreement between two graphs that disagree
at the level of synonymy links.

4 Self mediated agreement by confluence

4.1 Hypothesis: Conciliation reveals structural
similarity beyond disagreement of local
synonymy

We saw in section 2.2 that the rate of agreement be-
tween edges of two standard synonymy networksG′1
and G′2, Kl(G′1, G

′
2), is usually low. However, we

have noticed in Section 3.3 that the confluences of
pairs on which synonymy graphs disagree are sig-
nificantly more correlated (Γ ≈ 0.4) than the conflu-
ence of equivalent random networks (Γ ≈ 0). This
suggests the following hypothesis: synonymy net-
works are in agreement at a level that is not taken
into account by the Kappa measure on edges.

To verify this hypothesis, we try to make each pair
of graphs conciliate on the basis of confluence val-
ues. We propose a conciliation process by which
a graph can accept the addition of another’s edges
if they do not contradict its structure (i.e. there
is a strong confluence value). We then assess if a

strong agreement is found between the two resulting
graphs.

Let G1 = (V1, E1) and G2 = (V2, E2) be two
synonymy networks, both reflexive, undirected, con-
nected, and a given t ∈ N∗. We define:

• G′1 =
(
V ′ = (V1 ∩V2), E′1 = E1 ∩ (V ′×V ′)

)
• G′2 =

(
V ′ = (V1 ∩V2), E′2 = E2 ∩ (V ′×V ′)

)
• G(+G2)

1 = (V ′, E+
1 = E′1 ∪ C1) where

C1 =
{
(u, r) ∈ E′1 ∩ E

′
2

∖
P t
G′

1
(u r) > πG′

1
(r)
}

(6)

• G(+G1)
2 = (V ′, E+

2 = E′2 ∪ C2) where

C2 =
{
(u, r) ∈ E′1 ∩ E′2

∖
P t
G′

2
(u r) > πG′

2
(r)
}

(7)

G
(+G2)
1 and G

(+G1)
2 are called accommodating

graphs. The construction of the accommodating
graphs may be metaphorically understood as a con-
ciliation protocol by which two graphs accept pro-
posals of the other that they can reconsider. For ex-
ample, G(+G2)

1 is the graph G′1 enriched by edges
(u, r) of G′2 such that there is a strong confluence
between vertices u and r in G′1

The following property is worth noticing:

Proposition 1. ∀t ∈ N∗ :

(E′1 ∩ E′2) ⊆ (E+
1 ∩ E

+
2 ) ⊆ (E′1 ∪ E′2) (8)

Proof. By definition, E+
1 = E′1 ∪ C1 and E+

2 =
E′2∪C2, thus (E′1∩E′2) ⊆ (E+

1 ∩E
+
2 ), furthermore,

by definition, C1 ⊆ E′1∩E′2 and C2 ⊆ E′1∩E′2 thus
(E+

1 ∩ E
+
2 ) ⊆ (E′1 ∪ E′2).

4.2 Experimental protocol
If, for any (G1, G2) synonymy resources of the
same language, Kl(G

(+G2)
1 , G

(+G1)
2 ) is signifi-

cantly greater than Kl(G′1, G
′
2), then the hypothe-

sis is verified. The conciliation process depends on
confluence measures that depend on a given t, the
number of steps of the random walk. For t = 1,
only vertices in the neighbourhood of the starting
vertex are reachable. Consequently only pairs of
vertices that are edges have a non null confluence.
Thus Kl(G

(+G2)
1 , G

(+G1)
2 ) = Kl(G

′
1, G

′
2) which

does not help us to contrast conciliated graphs from



initial binary synonymy graphs. So we fix t = 2
the shortest walk length that still yields informative
results.

We propose a control experiment that consists
in applying the conciliation process to random net-
works that have the same Kappa as the pairs of syn-
onymy networks. The construction of these random
graphs is described above, in section 3.3. We mea-
sure the agreement after conciliation of 20 different
random graphs. With this control experiment we as-
sess that the observed results are specific to graphs
describing the same resource, and not a mere bias of
the protocol (let us imagine a protocol whereby one
would add all the disagreeing edges to the graphs:
not only the Kappa of the pseudo accommodating
synonymy graphs would be equal to one, but also the
Kappa of pseudo accommodating random graphs,
which would disqualify the protocol).

4.3 Results

Table 3 summarizes Kappa and conciliated Kappa
values on the pairs of synonymy graphs of verbs.
It shows a significant improvement of agreement
after conciliation. For example, from a moder-
ate Kappa (0.518) between graphs Rob′V and Lar′V
(constructed by experts), the conciliation process
leads to an excellent Kappa (0.852). Conversely the
random networks only increase their agreement by
0.01 (with a very low standard deviation σ < 0.001).
In English, from a poor (0.247) Kappa between
PWN ′V (constructed by experts) and Wik′V (con-
structed by the “crowds”), the conciliation process
leads to a moderate Kappa (0.530), whereas the ran-
dom networks only marginally increase their agree-
ment (0.004).

Results are similar for other parts of speech. This
means that the conciliation process significantly im-
proves the agreement between resources, even if
they are originally significantly diverge.

It is interesting to notice that the most sim-
ilar pairs in terms of edge agreement do not
necessarily produce the most agreeing pairs
of accommodating graphs. For example, the
pair(BaiV , RobV ) agrees more than the pair
(BaiV , LarV ), whereas for their accommodating
graphs, the pair(Bai(+RobV )

V , Rob(+BaiV )
V ) agrees

less than the pair (Bai(+LarV )
V , Lar(+BaiV )

V ).

Table 3: Kappa (ori.) and accommodating Kappa (acc.)
values between French and English synonymy graphs (of
verbs), compared with the Kappa values between pairs of
equivalent random graphs (“ori. r.” and “acc. r.”).

Kl BenV BerV LarV RobV WikV

BaiV

ori. 0.583 0.309 0.255 0.288
acc. 0.777 0.572 0.603 0.567

ori. r. 0.583 0.309 0.256 0.288
acc. r. 0.585 0.313 0.262 0.293

BenV

ori. 0.389 0.276 0.293
acc. 0.657 0.689 0.636

ori. r. 0.390 0.276 0.294
acc. r. 0.392 0.283 0.301

BerV

ori. 0.416 0.538
acc. 0.838 0.868

ori. r. 0.417 0.539
acc. r. 0.434 0.549

LarV

ori. 0.518
acc. 0.852

ori. r. 0.518
acc. r. 0.529

PWNV

ori. 0.247
acc. 0.540

ori. r. 0.247
acc. r. 0.251

So, when G1 and G2 are two synonymy graphs
of a given language, then they are able to address
their local synonymy disagreement and to reach a
significantly better agreement. On the other hand,
the agreement of random networks does not really
improve after conciliation. This proves that the syn-
onymy networks of the same language share specific
similar structures that can be detected with the help
of confluence measures.

5 Conclusion

Although graphs that encode synonymy judgements
of standard semantic lexical resources share simi-
lar HSW properties they diverge on their synonymy
judgements as measured by a low Kappa of edges.
So, one could wonder whether the notion of syn-
onymy is well defined, or if synonymy judgements
are really independent. Without directly address-
ing this question, we nevertheless have shown that
strong confluence measures help two synonymy
graphs accommodate each others’ conflicting edges.
They reach a much better agreement, whereas ran-
dom graphs’ divergence is maintained. Since the
graphs are HSW, they draw clusters of synonyms
in which pairs of vertices have a strong confluence.



This suggests two conclusions. First, different syn-
onymy resources that describe the same lexicon re-
veal dense zones that are much more similar across
graphs than the binary synonymy categorisation (the
synonym/not synonym alternative). These dense
zones convey information about the semantic organ-
isation of the lexicon. Second, random walks and
confluence measures seem an appropriate technique
to detect and compare the dense zones of various
synonymy graphs.

This theoretical work validates the random
walk/confluence approach as a potentially valid tool
for detecting semantic similarities. This opens many
perspectives for applications. For example, it can
be used to enrich resources as was done for the
Wisigoth project (Sajous et al., 2010). It may also
help to merge, or aggregate, resources. If we apply
the conciliation process to two graphs G1 and G2,
obtaining two accommodating graphs G(+G2)

1 =

(V ′, E+
1 )) and G(+G1)

2 = (V ′, E+
2 )) then the graph

G = (V ′, E′′ = (E+
1 ∩ E

+
2 )) could be a merged

resource. Indeed, G’s set of edges, E′′ seems like
a good compromise because, according to the prop-
erty 1, (E′1 ∩ E′2) ⊆ E′′ ⊆ (E′1 ∪ E′2). This new
aggregation method would need to be validated by
comparing the quality of the merged resource to the
results of the union or intersection.

Furthermore, this work is a first step for defin-
ing a similarity measure between graphs, that could
take into account the structural agreement rather
than a simple edge-to-edge disagreement. Subse-
quent work should generalise the conciliation pro-
cess along several axes:

• The number of steps t was chosen as the short-
est possible for the confluence measures. It
would be worthwhile to investigate the effect
of the length of the walks on the agreement of
the accommodating graphs.

• Another line of research would be to alter the
conciliation ability of graphs, by increasing or
decreasing the criterion for strong confluence.
One can for example introduce a k parameter in
the definition of C1 (resp. C2), in Equation 6:

P tG′1
(u r) > k.πG′1(r) (9)

• The conciliation process seems unbalanced in-
sofar as graphs only accept to add edges. It
should be extended to a negotiating process
where a graph could also accept to remove one
edge if the other does not have it and its conflu-
ence is weak.

• The conciliation process could also be gen-
eralised to graphs that have different vertices,
such as two synonymy networks of different
languages. In that case the issue is not anymore
to reveal a deeper similarity, beyond a local
disagreement, because one can not compare
the graphs vertex by vertex or edge by edge.
However, questioning whether the semantic
structures revealed by dense zones are similar
from one lexicon to another is an interesting
line of research. One approach to compare two
synonymy graphs of two different languages
would be to draw edges between vertices that
are translations of each other. Random walks
could then reach vertices of the two lexicons,
so that the conciliation process could be
generalised to accommodating two synonymy
graphs via translation links.
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